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The instability of capillary jets 

By ARTHUR M. STERLING? AND C. A. SLEICHER 
Department of Chemical Engineering, University of Washington, Seattle 

(Received 28 March 1974) 

At high jet velocity the aerodynamic interaction between a capillary jet and the 
surrounding medium leads to an enhanced growth rate of axisymmetric dis- 
turbances. The available theories which account for this effect fail to agree 
with experimental observations. The difference is attributed, in part, to the 
relaxation of the velocity profile in jets formed by fully developed laminar pipe 
flow. The profile relaxation has a destabilizing effect just as does the aerodynamic 
interaction. In  the absence of velocity-profile relaxation it is shown that the 
available theories overestimate the aerodynamic effect. A consideration of the 
viscosity of the ambient fluid yields a semi-empirical modification to the theory 
which shows good agreement with experimental values. 

1. Introduction 
It is a well-known and common observation that when a jet of liquid issues 

from an orifice or nozzle into air it  always breaks up into a train of drops. The 
breakup process is primarily a result of capillary instability, and its mathe- 
matical description was given by Rayleigh (1878). A more complete description 
of the capillary instability of Newtonian liquid jets a t  low velocities was given 
by Weber (1931), who has also shown that the behaviour of jets a t  higher velo- 
cities is affected by the aerodynamic forces at the jekair interface. These forces 
enhance the growth rate of a disturbance and lead to a nonlinear relation between 
the continuous length of the jet and its velocity. Weber’s theory predicts that 
the length will reach a maximum a t  some critical jet velocity. The predicted 
values of the maximum jet length and the critical velocity fail to agree, however, 
with available experimental data. This has led previous investigators either to 
modify empirically (with little success) or to discount entirely Weber’s theory 
of aerodynamic interaction. 

Weber’s theory has not, in fact, been fairly tested. In  the main, experiments 
used to test this theory have been carried out with nozzles of sufficient length to 
ensure fully developed laminar pipe flow. This in turn introduces the complica- 
tion of velocity-profile relaxation, which is not taken into account by the theory 
and which can have a marked effect on the instability. 

The objectives of this work are twofold. 
(i) To test Weber’s theory through an investigation of jets which are in- 

fluenced by aerodynamic forces but are free from the effects of velocity-profile 
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relaxation. The results will show that Weber’s theory overestimates the aero- 
dynamic effects. 

(ii) To consider the effect of ambient fluid viscosity on the normal stresses at 
the jet surface. The result, together with the results of the experiments, will be 
used to modify Weber’s theory of aerodynamic interaction. 
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2. Theory 
Consider a column of fluid of density p, viscosity p and surface tension cr 

streaming with uniform velocity U through a stationary, inviscid, incompres- 
sible medium of density j3. The column is assumed to be infinite in the axial 
direction and of radius a. We take a cylindrical polar co-ordinate system ( r ,  8, z )  
which moves with the column of fluid; the x axis coincides with the axis of the 
column and its positive direction is opposite to that of the uniform flow. 

We impose upon this initially steady motion an arbitrary, small, axisymmetric 
disturbance one Fourier component of which has at the surface the form 

7 = 9?(qoePtfikz). ( 1 )  
In  (I), y represents the displacement of the surface in the radial direction from 
its undisturbed position r = a, t is time, yo is the initial amplitude, k = 2n/h 
is the wavenumber, A is the wavelength and /3 is the complex frequency. The real 
part of /3 is the growth rate of the disturbance. There is no loss of generality in 
restricting the disturbance to be axisymmetric for only axisymmetric distur- 
bances are unstable. 

Associated with the disturbance will be a small axisymmetric fluctuating 
pressure p and veIocity u (with axial and radial components u and v). These 
fluctuations are described by the equations of motion and continuity, which can 
be linearized by neglecting all terms of second order in the fluctuating quantities. 
In  our co-ordinate system the linearized equations are 

(3) v.u = 0. 

The boundary conditions to be applied at  the surface, which can be taken as 
r 2: a to first order in 7, require that there be no net flux of mass across the surface, 
that the shear stress be zero and that the normal stress be continuous. These 
boundary conditions are expressed as 

v = Q / a t  at r 21 a, (4) 
+ av/ax = 0 a t  r 2: a, ( 5 )  

(Il I,) 

iiV 
- ( P + p ) + 2 p -  =-@-a  E + R  at r 2: a, 

a2 

where P is the undisturbed pressure in the jet and is equal to ala, fj is the fluctua- 
ting pressure in the surrounding medium and R, and R, are the principal radii 
of curvature of the surface. It is easily shown that to first order in y 

1 1  1 1  

R, R, a a2 
-+- 2: --- (1 - k W )  7. 
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We note that the inertial effects of the surrounding medium enter our analysis 
only through the fluctuating pressure @ in boundary condition (6). This pressure is 
found from the equations of motion and continuity for the surrounding medium, 
which are 

v.a = 0, 
with the boundary condition 

3 = ar/at + U ar/az a t  r N a. (9) 

We continue with the notation that quantities which refer to the surrounding 
medium are indicated with a caret with the exception of U ,  whose meaning is 
clear. As we have assumed that the surrounding medium is inviscid, we can ex- 
press the velocity in terms of a velocity potential, i.e. we can take = V$, 
which reduces (7) and (8) to 

a$pt + u @/ax = - @/p^ (10) 

and v2$ = 0. (11)  

Within the jet the velocity can be separated into an irrotational and viscous 
part, i.e. u = V $ + V X B ,  

where q5 is the velocity potential, B = (0, - $/r,  0) and $ is the stream function, 
defined by 

u = v=--. 1 a$ 
r ar' r az 

This reduces (2) and (3) to 
a4/at = -PIP, 

a 2 4  l a 4  a24 - +--+- = 0. 
ar2 r ar a22 

In terms of $, 9 and $, the boundary conditions (4)-(6) and (9) become 

a$ - = - + U -  ar ar a t  r z a ,  
ar at ax 

84 a7 
ar r a2 at 
-+--=- at r N a ,  

! '?Y- -C( ! ! t )+23=0  ar a2 at r E a ,  
r 3 x 2  ar r ar 

a24 B 
-p+2p-  = - @ + - ( 1 - k 2 a 2 ) r  at r E a. 

ar2 U 

We now assume $, g5 and $ to be of the form 

g(r,  x ,  t )  = G(r)  ept+ikz 
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and seek solutions of ( l l) ,  (13) and (14) which are free from singularities at the 
axis and at  infinity. These solutions are 

4 = AKo(kr) eat+ike, $ = BIo(kr) ePt+ik2, 

$ = CrI,(lr) eflt+ikz, 

where I,(kr) and K,(kr) are the nth-order modified Bessel functions of the first 
and second kind and l2 = k2+Pp/p .  The constants A ,  B and C are eliminated 
through the boundary conditions (15)-(17) and the pressures p and @ are found 
from the equations of motion (10) and ( 1 2 ) .  Substitution into the normal-stress 
boundary condition (1 8) yields, after considerable algebraic manipulation, 

or 

where 

Equation (19) includes the results of all previous investigators as special cases. 
Specifically, with p̂ , p and U equal to zero, (19) reduces to 

a result due originally to Rayleigh. If we neglect only the viscosity of the jet, 
i.e. set F3 = 0, there remains a slightly different form of the result obtained by 
Alterman (1961), which is the solution for a cylindrical vortex sheet with sur- 
face tension. Since ,8 will now be complex, the disturbance will propagate along 
the jet with a velocity c = Pi/k,  where pi is the imaginary part of P. Recall that, 
with c positive, the direction of propagation will be opposite to the direction of 
motion of the jet. 

Finally, if we neglect only the imaginary term F2, we obtain the result due to 
Weber. Weber further simplified the equation with the approximations 

and for 6 < 1, 

The simplified result is 

In  treating the influence of the air on the growth of the disturbance, Weber 
considered the flow of air over a corrugated cylinder. For a fixed surface the 
term F2 does not arise and was therefore not included by Weber. If the corruga- 
tions are allowed to grow, however, this term does arise. Though it is clear that 
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this term contributes an imaginary component to p, i.e. a disturbance velocity 
relative to the jet velocity, it is difficult to assess, by inspection, its effect on the 
results for the maximum value of /3 and the wavenumber at which /3 is a maxi- 
mum. Calculations were carried out by the authors on the full equation (19) for 
a variety of fluids and jet diameters and compared with the results when F2 was 
omitted. These calculations show that in all cases the term in question could be 
ignored as it contributes little to the magnitude of /3 (less than 0.1 yo), and the 
calculated wave velocity is less than 0.2 % of the relative velocity between the 
jet and the ambient fluid. 

The criterion for the truncation of the Bessel functions used to reduce (19) to 
(21) is that the argument be less than unity. This criterion is satisfied for [ but 
not necessarily for A comparison of solutions of (19) with those of (21) for 
low velocity water jets, however, shows a small difference in the maximum value 
of p ( N 3 %) and a negligible difference in the wavenumber at  which the maxi- 
mum occurs. It should be noted that when the aerodynamic term F5 becomes 
appreciable p is larger. Thus is also larger, and the difference between the solu- 
tions of (19) and (21) may become appreciable. Because of this effect, the curves 
for Weber’s equation shown on figures 4-8 below were derived from the full 
equation ( 19). 

Experimental tests of the characteristic equation 

The properties of the jet which are of most interest are either the drop size or 
spacing (a measure of the wavenumber of the most unstable disturbance) and 
the continuous length (a measure of the growth rate of the disturbance). 

If the amplitude of all the Fourier components of the arbitrary initial distur- 
bance are of the same order of magnitude, it is expected that the component with 
the largest growth rate will eventually dominate the breakup. We denote the 
dimensionless wavenumber of this component as (* and the growth rate of this 
component as p*. If the initial disturbance has amplitude T~ and grows to a 
magnitude a in time t*, then 

a = TOeB*t*, 

O r  t* = P*-fln ( a / ~ ~ ) .  

The jet length will then be 

L = Ut* = (U/p*)  In (a/qo). ( 2 2 )  

The most unstable wavenumber [‘F and the growth rate p* are obtained from the 
solution of (19) or (21). Substitution ofp* into ( 2 2 )  yields a theoretical jet length 
which, together with t*, can be compared with experimentally determined values. 

3. Modification of the theory 
Previous modijkations 

Grant & Middleman (1966) performed a series of careful experiments on liquid 
jets with a wide range of viscosities from nozzles with length-to-diameter ratio 
l /d N 100. They were unable to correlate their data with Weber’s result. For jets 

3 1  F L M  68 
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with Ohnesorge number 2 = ,u/(pdv)h less than 0-056 the jet length and jet 
velocity a t  maximum length were less than those predicted; for jets with 2 greater 
than 0-056 the converse was found. They then modified Weber’s result in two 
steps. First, the aerodynamic term F5 in (20) was modified by replacing the 
Bessel functions with an arbitrary function of the Ohnesorge number. That is, 
they put 

By forcing the modified equation to predict velocities a t  the maximum jet 
length which were consistent with their data, they found 

F5 = (p^uz/pa2) tY(Z). 

j (z )  = c12-1.32. 

As a second step, the jet length predicted by the modified theory was forced to 
agree with experiment by treating the magnitude of the initial disturbance in 
(22) as a function of 2. This resulted in 

In (a/r,) = C, - C3 In 2. 

This empirical modification correlated their experimental results at standard 
pressures, but it failed for data taken a t  reduced ambient pressures. The jet 
lengths predicted by the modified theory for subatmospheric pressures are 
much greater than those observed experimentally. No data were reported on the 
wavenumber of the dominant disturbance. 

The failure of Grant & Middleman’s correlation a t  reduced pressures has 
implications for the physical mechanisms involved in the breakup. The term 
which they modified arises, in the theory, solely from a consideration of the 
inertia of the ambient fluid. Their modification, however, is made in terms of 
properties of the jet fluid only and therefore must correct for physical processes 
which occur within the jet. The modified term retains the ambient density, and 
as the ambient pressure is reduced, the correlation is lost. One must conclude 
that the primary mechanism responsible for the maximum in Grant & Middle- 
man’s breakup curves is connected with processes occurring within the jet and is 
independent of ambient conditions. One plausible process is the relaxation of the 
fully developed laminar velocity profile, the effects of which can be related 
heuristically to Grant & Middleman’s correlation in the following way. 

On the basis of measurements of the centre-line stagnation pressure in jets 
initially in fully developed laminar flow, Rupe (1962) suggests that the jet 
length required for the velocity profile to relax to a uniform velocity profile 
(the relaxation length) is comparable with the entry length for laminar flow in a 
pipe. This agrees quite well with the theoretical results due to Bohr (1909) and 
Duda & Vrentas (1967). Thus we take 

&Id cc Re, 
where lr is the relaxation length. 

and (22). I n  the absence of aerodynamic effects these equations give 
We can estimate the parametric dependence of the breakup length using (21) 

from which 

L / d  cc Wet (1 + 32) ,  

1JL cc l/(Z + 3Z2). 
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The effect of the velocity-profile relaxation should become more pronounced 
as the ratio of relaxation length to breakup length increases. We also expect 
the relaxation effects to depend on the extent to which the velocity profile 
differs from a uniform profile. A convenient measure of this difference is the 
velocity gradient at the wall: 

[ a U / a r ~ , = ~  K U/a. 

One might then expect the velocity-profile relaxation effects to increase in pro- 
portion to the product 

(23) 

whose units are consistent with the other terms of (19). Grant correlated his 
results with a term of the form 

( U/a)z  (2 + 3Z2)-l, 

constant (U/a)22-1.32. (24) 

The similarity of these forms strongly suggests that Grant & Middleman’s 
correlation accounted for velocity-profile relaxation and that an important para- 
meter in such a correlation is the ratio of relaxation length to breakup length. 
When the relaxation length is small compared with the breakup length, i.e. 2 is 
large, velocity-profile relaxation effects should be small, and the aerodynamic 
forces should determine the nonlinear behaviour. Conversely, when Z is small, 
relaxation effects become paramount, rendering the breakup curve independent 
of the ambient conditions. Such arguments are consistent with the available 
experimental data. 

Grant & Middleman’s correlation for t’he initial amplitude of the disturbance 
in terms of the Ohnesorge number corrects for jet length in a way opposite to the 
modification of the aerodynamic term. That is, as Z increases, the growth rate 
calculated from the modified equation is less, which increases the jet length 
according to ( 2 2 ) .  The correlation for In (a/yo) ,  however, indicates a decrease in 
jet length as 2 increases. In  this connexion we note the functional behaviour of 
the forms (23) and (24). Apart from a constant multiplier, which is unimportant 
here, the form (23) has smaller values a t  low 2 and higher values at  large 2. 
Thus the use of (23) in Grant & Middleman’s modification would lead to longer 
jet lengths a t  small Z and shorter jet lengths at  large 2, a correction which acts 
in the same way as their correlation for In (a/yo).  It would be interesting to see 
whether this new functional dependence on Z could alone account for the relaxa- 
tion effects. 

Proposed modi$cation 

Any improvement to the theory with respect to the aerodynamic forces must 
centre about the effects of the viscosity of the ambient fluid, for the neglect of the 
viscosity of the ambient fluid is the most significant simplifying assumption of 
Weber’s analysis. The viscous effects enter the analysis through the shear-stress 
and normal-stress boundary conditions a t  the jet surface. (In the derivation of 
(ig), the shear stress was set to zero and the normal stress imposed by the ambient 
fluid was taken as the negative of the ambient static pressure. This is found, 
through (7 )  and (9), to be in exact antiphase with the elevation of the surface of 

31-2 
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the jet.) In  principle, these stresses can be determined for the viscous case from 
the solution of the cylindrical form of the Orr-Sommerfeld equation, which 
describes shearing flow over a wavy cylinder. This is a difficult task, but we can 
gain some insight into the form of these stresses by considering previous results 
obtained for the planar case. 

Benjamin (1959) has treated the case of shearing flow over a two-dimensional 
wavy surface. For thin boundary layers (of thickness small compared with the 
wavelength of the disturbance) over a surface on which waves move slowly in the 
direction of the primary flow, the energy transferred from the mean flow to the 
disturbance by shear stresses is small compared with the energy transferred by 
normal stress, and the ratio is independent of the Reynolds number. I n  the limit 
as the Reynolds number tends uniformly to infinity, the pressure distribution at 
the boundary is ((that given by the ideal-fluid theory applied to the (Kelvin- 
Helmholtz) model of a uniform primary flow extending right down to the bound- 
ary”. For a finite Reynolds number Benjamin finds that the magnitude of the 
fluctuating pressure component in phase with the wave elevation is less than the 
magnitude given by the ideal-fluid theory. 

As a first approximation, we can apply these results directly to the present 
case. That is, we neglect the shear stress at the jet surface and reduce the magni- 
tude of the normal stress by a coefficient yet to be determined. Equation (19) 
remains unchanged except that the function F5 is replaced by the function CF,. 
That is, the modified equation becomes 

p 2 { q )  + p(iF2 + Fa) = F4 + C q .  (25)  

The constant C can then be determined by comparing the results of ( 2 5 )  and 
(22) with experimentally observed values. Those values must be from experi- 
ments in which velocity-profile effects were negligible, and for this purpose we 
have chosen data reported by Fenn & Middleman (1969) for their solution 2 at 
a pressure of 0.5atm. For a given value of C, equation (25) was solved by an 
iterative technique on a computer. The maximum value of the growth rate 
p* was found by a 20 step golden-sections search over the possible values of the 
dimensionless wavenumber. The growth rate was then used with (22) to  calculate 
the jet length. The parameter In (a/r,) in (22) was found by using low velocity 
data, the theory for which is not in question. That is, r0 depends upon ambient 
vibrations and noise and the extent to which the apparatus is isolated from such 
disturbances. The value of In (a/ro) found a t  low velocities was then assumed to 
apply a t  the higher velocities. The constant C was adjusted until the calculated 
and experimental values of the jet length agreed a t  a velocity of 2510cm/s. 
The values agreed when C = 0-175. 

4. Experiment 
Apparatus 

The experimental apparatus consisted of a pressurized fluid reservoir, a calming 
section and a fluid receiver, as shown in figure 1. A 15 gallon air receiver vessel 
was used as the fluid reservoir. The reservoir was pressured by bottled dry 
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FIGURE 1. Schematic of experimental apparatus. 

FIGURE 2. Calming section. 
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FIGURE 3. Shape of nozzle core. 

nitrogen. The fluid temperature was measured by a probe installed in the 
reservoir and connected to a digital thermometer. Fluid passed from the 
reservoir to the calming section via a 2 f t  flexible hose. 

The calming section (figure 2 )  consisted of a 29in. length of 2in. I.D. BWG 3 
stainless-steel pressure tubing, which enclosed sections of 18 in. type L copper 
water tube and a 2in. aluminium honeycomb flow straightener. The sections 
of copper tube were supported by brass rings, two of which were fitted with calm- 
ing screens. The downstream end of the copper tube butted firmly against the 
nozzle. A pressure tap was drilled 2 in. from the downstream end of the section, 
and pressures were measured with a Statham transducer and recorded on a 
Heathkit chart strip recorder. 

The calming section was fixed to a 350 lb cement inertia pad, which rested on 
four vibration isolators (springs). The vibration isolators were placed on two 
3ft  columns of concrete blocks. It should be added that the building itself is 
relatively vibration free; all motors in the building larger than about 1h.p. are 
supported on vibration isolation mounts. 

Nozzles were made by casting polyester resin around a polished aluminium 
core. The core was turned to the shape shown in figure 3 and was designed to 
give a nearly uniform velocity profile a t  the nozzle exit. The greatest diameter 
of the nozzle matched the inside diameter of the copper water tube, and the least 
diameter matched the desired orifice diameter. Both ends of the core were paral- 
lel to the axis of symmetry. The nozzles were initially cast with a short length 
(l /d N 1) of hypodermic tubing embedded in the downstream end. This tubing 
was carefully removed after the nozzle had cured, leaving a smooth circular 
orifice. These nozzles are hereafter referred to as short nozzles. 

Extensions to the nozzles (hereafter referred to as extended nozzles) were 
made by inserting a length of hypodermic tubing in place of the short section of 
tubing which had been removed. The snugness of fit was sufficient to hold the 
extension in place. 

Nozzle diameters were measured by a travelling microscope which was ac- 
curate to within 0.001 cm. The dimensions of the nozzles used in this experiment 
are shown in table 1. 

The physical properties of the experimental fluids are given in table 3. 
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d (em) I ld 
Short nozzles 0-238 2: 0.25 

0.167 N 0.25 

Extended nozzles 0.238 96 
0.160 49 

TABLE 1. Nozzle dimensions 

Surface tension Viscosity Density 
(dyneslcm) ( C P )  ( g/cm3) 

Water 72.3 0.93 0.997 
Isopropyl alcohol 21-7 2-13 0-784 
No. 3 mineral oil 29.4 31 0.868 

TABLE 2. Physical properties of the experimental fluids a t  23 "C 

Data colleetion 

A pressure-velocity correlation was determined for each nozzle-fluid combina- 
tion. The jet fluid was collected over times long enough to negate timing errors, 
and the pressure was recorded. The volume flow rate was then converted to the 
jet velocity a t  the orifice. The velocity of the jets formed by the extended nozzles 
was corrected to account for the jet contraction in accordance with the correla- 
tion of Gavis & Modan (1967). A similar correction was not applied to the velocity 
of the jets formed by the short nozzles, for the contraction of these jets, as dis- 
cussed below, was small. 

When the jet was very steady, as it was for lower velocities, the motion could 
be visually frozen by a strobe light, and the breakup point could be determined 
accurately. With the room lights on, the jet appeared to thicken and to become 
opaque a t  the point where the jet pinched off, indicating the breakup point. 
It was determined that either of these methods gave sufficiently accurate indica- 
tions of the breakup point. At intermediate velocities the jet length varied by as 
much as 3 cm about a mean value. I n  this case the breakup point was deter- 
mined in room light as the eye averaged these variations. 

Once t>he breakup point had been determined, the length was measured by 
a flexible tape, placed so that its curvature approximated the curvature of the 
jet. At higher velocities, when the variation in length exceeded 2 cm, the 
average breakup length was determined from photographs taken with a 16 mm 
Arriflex motion-picture camera on Plus-X film a t  24 framesls. The framing rate 
was a t  least an order of magnitude less than the lowest frequency of the varia- 
tion in jet length. The jets were illuminated from behind by a General Radio 
Strobotac synchronized to the camera shutter. Fifty to one-hundred frames 
were exposed a t  each velocity. The films were read on a Vanguard motion 
analyser a t  a net magnification of 0.55. The breakup point was measured with 
respect to a fiducial point and the jet length recorded. 

For the jets formed by the short nozzles, the wavenumbers and contraction 
ratios (diameter of jet divided by orifice diameter) were measured from still 
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Velocity Nozzle Reynolds Contraction 
(cmls, diameter (cm) number ratio 

313 0.167 146 0.953 
210 0.280 1841 0-984 

1150 0.167 7077 0.988 

TABLE 3. Jet-contraction measurements for short nozzles 

photographs. These photographs were taken on Tri-X film with a Nikon camera 
fitted with a 200 mm lens on a bellows extension. A section of tubing of known 
diameter, placed in the plane of the jet, was included in the photograph. A 
strobe light, synchronized to the shutter of the camera, illuminated the jets from 
behind. Films were read on the Vanguard motion analyser at  a net magnification 
of x 4. Wavelengths and jet diameters were measured to within 0*001 cm and 
recorded. 

5. Discussion of results 
Performance of short nozzles 

The diameters of the jets formed by the short nozzles were measured to test for 
the presence of contraction owing to either velocity-profile relaxation or separa- 
tion of the flow. The measurements were made at jet lengths sufficient to ensure 
complete relaxation of the velocity profile. The results are shown in table 3. 

A measure of the effective lld of the short nozzles can be obtained by comparing 
the result at  the lowest Reynolds number with the results obtained by Gavis 
& Modan (1967). This comparison indicates that the effective lld is less than 0.5, 
and extrapolation of their data indicates a value of the order of 0-25. 

The contraction ratio at the highest velocity indicates the absence of a vena 
contracta and is in agreement with the Gavis & Modan result that the contraction 
ratio for short nozzles approaches unity its the Reynolds number becomes larger. 

These results indicate that the short nozzles were adequate to form jets 
effectively free of separation and velocity-profile relaxation effects. 

Breakup curves 

The breakup curves for water, isopropanol and mineral-oil jets are presented in 
figures 4-8. In all cases, the length of the jets formed by the short nozzles is much 
longer, and the maximum length occurs a t  a higher velocity than those predicted 
by Weber’s theory, i.e. equation (20). 

For the water jets and the isopropanol jet formed by the larger diameter 
nozzle (figures 4-6), the maximum in the breakup curve can be attributed to a 
perturbation of the surface by turbulent eddies within the jet. This was indicated 
by a sudden change in the appearance of the jet at the nozzle from a smooth glassy 
surface to a semi-opaque rufled surface. The velocity at  which surface ruffling 
first appeared is indicated in the figures. The Reynolds number at which surface 
ruffling occurs is not unique but tends to decrease monotonically with increasing 
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FIGURE 4. Breakup length of water jets as a function of jet velocity and nozzle length-to- 
diameter ratio. 0, l /d  = 0; ---- , Weber’s equation; -, modified equation; J. velocity 
a t  which surface ruffling first occurs. V, l /d  = 96; ---, Weber’s equation. Nozzle dia- 
meter = 0.238cm. 
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FIGURE 6. Breakup length of water jets as a function of jet velocity and nozzle length-to- 
diameter ratio. Nozzle diameter = 0.167cm: 0, Z/d = 0; ----, Weber’s equation; -, 
modified equation; 4, velocity a t  which surface ruffling first occurs. Nozzle diameter 
= 0-160cm: V, l /d  = 49; , Weber’s equation. 

Ohnesorge number 2. In  the absence of surface ruffling (figures 7 and 8), the 
breakup curves exhibit the same general shape as is predicted by Weber’s 
result. This suggests that the form of Weber’s result is correct but that the aero- 
dynamic effects are overestimated. 

The breakup curves obtained from the extended nozzles are included for com- 
parison in figures 6 8 .  The maximum in these curves for water and isopropyl 
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FIGURE 6. Breakup length of isopropanol jets as a function of jet velocity and nozzle length- 
to-diameter ratio. O,l/d = 0; ---, Weber’s equation; -, modified equation; $ , velocity 
at  which surface ruffling first occurs. V, l /d = 96; , Weber’s equation. Nozzle dia- 
meter = 0.238 cm. 

FIGURE 7. Breakup length of isopropanol jets as a function of jet velocity and nozzle 
length-to-diameter ratio. Nozzle diameter = 0.167 cm: O , l / d  = 0; ----, Weber’s equation; 
-, modified equation. Nozzle diameter = 0.160 cm: o , l / d  = 49; ---Vl’eber’s equation. 
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FIGURE 8. Breakup length of mineral-oil jets as a function of jet velocity and nozzle length- 
to-diameter ratio. Nozzle diameter = 0.167cm: 0, l/d = 0; ----, Weber’s equation; 
-, modified equation. Nozzle diameter = 0.160cm: V, l/d = 49; -1-, Weber’s equa- 
tion; __ , modified equation. 
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FIGURE 9. Comparison of modified equation with data of Fenn & Middleman (1969) for 
their solution 1, nozzle 1; Ohnesorge number 2 = 0.372. Ambient pressure: 0, 0.2atm; 
V, O.5atm; 0,0.98atm. 

alcohol is also coincident with the occurrence of continuous surface ruffling a t  
a Reynolds number (based on the tube diameter) between 2200 and 3000. I n  
the case of mineral oil, however, the jet length attains a maximum at a Reynolds 
number of 690 in the absence of surface ruffling. The difference in the curves ob- 
tained for mineral-oil jets from the short and extended nozzles can be attributed 
to the contraction of the jet from the extended nozzle. 

Veri$cation of the modi$ed theory 
The modified theory is compared with experimental data in figures 4-13. These 
data are taken from the present experiments and from applicable results reported 
in the literature. Very few of the data previously reported in the literature are 
applicable owing to the velocity-profile relaxation effects discussed above. The 
exceptions are the data reported by Fenn & Middleman (1969) for liquids with 
viscosities of 49, 34 and 20cP (2 = 0.372, 0.262 and 0.155) and at ambient 
pressures of 1, 0.5 and 0.2 atm. Their results for ambient pressures of 0.067 and 
0.0067 atm and their lower viscosity data are not applicable. This is indicated by 
the behaviour as the ambient pressure is reduced; there is little or no change in 
the breakup curve. Thus aerodynamic effects can no longer be the controlling 
factor. I n  view of the previous discussion this behaviour is expected for their low 
viscosity fluids (2 = 0-039 and 0.01 1). While velocity-profile relaxation effects 
would not be expected for the high viscosity fluids at normal pressures, as the 
ambient density is greatly reduced, the aerodynamic forces are diminished and 
any contributions owing to relaxation effects are unchanged. The relaxation 
effects, which are negligible a t  normal pressures, may thus become dominant as 
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FIGURE 10. Comparison of modified equation with data of Fonn & Middleman (1969) 
for their solution 2, nozzle 2; Ohnesorge number 2 = 0.2G2. Ambient pressure: 0, 
0.2atni; V,  0.5atm; 0, 0.98atm. 
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FIGURE 11.  Comparison of modified equation with data of Fenn & Middleman (1969) for 
their solution 3, nozzle 2; Ohnesorge number 2 = 0.155. Ambient pressure: 0, 0.2atm; 
V ,  0.5atm; 0, 0.9Satm. 

the aerodynamic forces are reduced. As can be seen in figures 9-1 1, this behaviour 
persists and is most pronounced for the lowest viscosity fluid. While the velocity- 
profile relaxation effects are not dominant, it is evident that they become in- 
creasingly important as the viscosity of the fluid and the ambient density are 
reduced. 
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The experimental values, in the absence of nozzle effects, of both the jet 
length and the jet velocity V* a t  maximum length over a wide range of fluid 
properties, ambient densities and nozzle dimensions are correlated remarkabIy 
well by the modified theory. This is rather surprising in that Benjamin’s analysis 
indicates that the attenuation of the aerodynamic term F5 is not constant but 
rather is dependent on the Reynolds number of the ambient fluid. By considering 
the interdependence of the terms in the modified equation (25) and the form of 
Benjamin’s results, we can see how this functional dependence could be reduced. 

Benjamin’s result implies that  the attenuation constant C in the modified 
equation (25) should behave as 

c = { 1 - f ( 5 ,  a, (26) 
A 

where f(6, Re) increases as the wavenumber 5 increases and decreases as the 
Reynolds number Re, based on the ambient fluid properties, increases. I n  the 
limit as Re tends uniformly to infinity, f(5, Re) --f 0, C + 1 and the modified 
equation (25) reduces to Weber’s equation (19). Thus we should expect C to 
increase with Re. We find from our calculations, however, that as the aerodynamic 
term CF5 increases the wavenumber increases also. This tends to offset the effect 
of the ambient Reynolds number if we assume that the form (26) applies. 

The wavenumber of the most unstable disturbance is an important parameter 
in that it determines the size of the ensuing drops. Calculations carried out using 
the modified equation and Weber’s equation reveal a distinct relation between 
the wavenumber [* of the most unstable disturbance and the ambient Weber 
number. For Weber’s equation this relation is 

In(E*/C:) = 0=191We, 

A 

A A 

P. 

A 

and for the modified equation 
A 

In (c*/<:) = O.O35We, 

where 5; is the dimensionless wavenumber when aerodynamic effects are absent. 
These equations are compared with the experimental values of the dimension- 

less wavenumbers in figure 12. The experimental points are mean values of 20- 
108 measurements and are somewhat uncertain because of the wide scatter of the 
measurements about the mean values. The relative scatter of the measurements 
a t  each value of the ambient Weber number was of the order of 20%. This 
scatter is expected because of the random nature of the initial disturbance. 
Nevertheless, the modified theory shows excellent agreement with the experi- 
ment; the experimental values are correlated by the modified theory with a 
coefficient of correlation r = 0.92. 

Fenn & Middleman (1969) defined the critical ambient Weber number 
A 

Wecrit = ,6dU2/a 

as the value of the ambient Weber number a t  which the length-velocity curve 
departs from a linear relationship. They determined a value of 5 from their data. 
It is difficult to determine this number from the data with accuracy. I n  addition, 
the error is magnified owing to the quadratic dependence on the velocity. 
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FIGURE 12. Measured and predicted variation of the dimensionless wavenumber with 
ambient Weber number. Nozzle diameter = 0-167cm: A, mineral oil; n, isopropanol; 
0, water. Nozzle diameter = 0.160cm: 0, water. ----, Weber’s equation; -, modified 
equation. 
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FIGURE 13. Correlations for the critical ambient Weber number We,,, and the ambient 

Weber number We* at the maximum jet length as functions of the Ohnesorge number 2. 
These correlations were derived, by calculation, from the modified equation. 
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The modified equation was used to calculate the critical ambient Weber 
number, defined as the ambient Weber number a t  which the aerodynamic term 
is 10 % of the surface-tension term. The results of these calculations for the range 
0 < Z < 0.4, for which the modified theory was shown to be valid, are shown in 
figure 13. These results suggest that a similar correlation exists for the maximum 
in the breakup curve, that  is, that the maximum occurs when the aerodynamic 
term is some constant multiple of the surface-tension term. The modified theory 
was used to determine the values of the ambient Weber number, the aerody- 
namic term and the surface-tension term a t  the maximum in the breakup curve. 
Whereas these calculations show that there is no simple relationship between the 
aerodynamic and surface-tension terms a t  the maximum (perhaps owing to the 
subtle interaction of the terms through the wavenumber), a correlation between 
the ambient Weber number We* at the maximum jet length and the Ohnesorge 
number was obtained and is shown in figure 13. The experimental values of We* 
are not included as it is very difficult to  determine accurately the location of the 
maximum in the curves because of the rather flat shape at the maximum. 

A 

A 

6 Concluding remarks 
The excellent agreement between the modified theory and the experimental 

results indicates that  Weber’s analysis of the aerodynamic effects is qualitatively 
correct and that, when proper consideration is given to  the stresses a t  the jet 
surface, a simple modification leads to a quantitative theory. This contradicts 
the conclusions reached by Fenn & Middleman (1969) that: (i) Weber’s analysis 
is not qualitatively correct, and (ii) shearing stresses a t  the jet surface are im- 
portant. 

The departure of the data of Fenn & Middleman and others from Weber’s 
theory can be explained by the effects of velocity-profile relaxation. The criteria 
for determining when these effects can be ignored are yet to be established, but 
the present results, along with t,he results of Grant & Middleman, indicate that 
these criteria will depend on the parameter ( tJz/u2) f(2). 

REFERENCES 

ALTERMAN, Z .  1961 Phys. Fluids, 4, 955. 
BENJAMIN, T. B. 1959 J .  Fluid Mech. 6, 161. 
BOHR, N. 1909 Phil. Trans. A 209, 281. 
DUDA, J. L. & VRENTAS, J. L. 1967 Chem. Engng Sci. 22, 855. 
FENN, R. W. &MIDDLEMAN, S. 1969 A.1.Ch.E. J .  15, 379. 
GAVIS, J. & MODAN, M. 1967 Phys. Fluids, 10, 487. 
GRANT, P. G. & MIDDLEMAN, S. 1966 A.1.Ch.E. J .  12, 669. 
RAYLEIGH, LORD 1878 Proc. Lond. Math. Xoc. 10, 4. 
RUPE, J. H. 1962 Jet Prop. Lab., Gal. Inst. Tech., Tech. Rep. no. 32-207. 
WEBER, C. 1931 2. angew. Math. Mech. 11, 136. 


